Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Neil Glagovich, ${ }^{\text {a }}$ Elizabeth<br>Reed, ${ }^{\text {a }}$ Guy Crundwell, ${ }^{\text {a* }}$<br>James B. Updegraff III, ${ }^{\text {b }}$<br>Matthias Zeller ${ }^{\text {b }}$ and<br>Allen D. Hunter ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Youngstown<br>State University, One University Plaza, Youngstown, Ohio 44555, USA

Correspondence e-mail:
crundwellg@mail.ccsu.edu

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.042$
$w R$ factor $=0.115$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

# $N$-(9H-Fluoren-9-ylidene)- N -(4-methoxyphenyl)amine 

The title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}$, was synthesized by the p-toluenesulfonic acid-assisted Schiff base reaction between 9-fluorenone and 4-methoxyaniline. The crystal structure of the title compound has been determined at 100 K .

## Comment

The chemistry of imines has enjoyed renewed interest in the synthetic organic and organometallic disciplines. The use of imines in the formation of aromatic heterocycles (Weinreb \& Scola, 1989; Kel'in et al., 2001; Doyle et al., 2003) and $\beta$-lactams (Hart \& Ha, 1989) has seen the utility of the imine functionality increase dramatically in organic synthesis. Imines have also been used successfully as starting materials in the formation of chiral amines (Porter et al., 2001) and in enantioselective Diels-Alder reactions (Kobayashi \& Ishitari, 1999). In addition, imines have found utility as ligands in the formation of chiral transition metal complexes (Davis \& Arndtsen, 2000; Baar et al., 2000). These and other advances in imine chemistry have prompted our group to investigate the formation of imines for use in the resolution of racemic mixtures of aldehydes and ketones. Chiral amines can form Schiff bases with racemic aldehydes and ketones to form diastereomeric mixtures of imines. These diastereomers can be resolved either through flash chromatography or differential recrystallization.

(I)

The title compound, (I) (Fig. 1), is not chiral, however, and was synthesized in order to determine the viability of imine formation conditions. Large orange crystals of (I) were obtained after column chromatagraphy using an 80/20 (by volume) mixture of hexanes and ethyl acetate. Compound (I) crystallizes in a general position. The benzene ring bound to the imine N atom bears a methoxy group that is nearly coplanar. To avoid unfavorable steric interactions between H atoms on atoms C 1 and C 19 , the substituent benzene ring has a dihedral angle of $68.08(11)^{\circ}$ with respect to the $9 H$-fluoren9 -imine unit. The $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 14$ angle of $122.16(9)^{\circ}$ and the $\mathrm{N} 1-\mathrm{C} 9$ bond distance of 1.2808 (12) $\AA$ are in close agreement with the two published structures of the similar $N$-fluorenylideneaniline (Peters et al., 1998; Pierre et al., 1997).

## Experimental

To a 100 ml round-bottomed flask equipped with a Hickman still and reflux condenser was added 9 -fluorenone ( $2.5 \mathrm{~g}, 14 \mathrm{mmol}$ ), 4-meth-

Received 8 March 2004
Accepted 15 March 2004 Online 24 March 2004


Figure 1
A view of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms have been omitted for clarity.
oxyaniline $(2.06 \mathrm{~g}, 16.8 \mathrm{mmol}), p$-toluenesulfonic acid $(0.014 \mathrm{~g}$, $74 \mu \mathrm{~mol})$ and toluene ( 50 ml ). The resulting mixture was heated under reflux for 24 h . After this time, the resulting black solution was concentrated under reduced pressure, producing a black solid. The solid was purified by flash chromatography ( $\mathrm{SiO}_{2}, 80 \%$ hexanes-ethyl acetate), producing fluoren-9-ylidene-(4-methoxy-phenyl)-amine $(3.36 \mathrm{~g})$ as an orange solid (yield $84 \%) . R_{f} 0.64\left(\mathrm{SiO}_{2}, 80 \%\right.$ hexanesethyl acetate); m.p. 404.5-406.1 K; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\text {max }}, \log \varepsilon\right): 420$, 3.386; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3049,3004,1644,1236,1033,846,791,731$, $654 ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.924(d, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.599(d$, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.462(t, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.338(q, 2 \mathrm{H}, J=7.7 \mathrm{~Hz})$, $6.970(m, 5 \mathrm{H}), 6.736(d, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.874(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.29,156.62,144.89,143.74,141.74,137.62$, 131.67, 131.62, 131.13, 128.34, 127.62, 126.86, 123.14, 120.14, 119.65, 119.52, 114.53, 55.47; MS calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}: M^{+} 285$; measured: 285. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C} 84.19, \mathrm{H} 5.30, \mathrm{~N}$ $4.91 \%$; found: C 83.95, H $5.53, \mathrm{~N} 4.89 \%$.

## Crystal data

```
\(\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}\)
\(M_{r}=285.33\)
Monoclinic, \(C 2 / c\).
\(a=19.0275\) (10) A
\(b=9.8262\) (5) A
\(c=17.4862(10) \AA\)
\(\beta=118.4860(10)^{\circ}\)
\(V=2873.5\) (3) \(\AA^{3}\)
\(Z=8\)
```

$D_{x}=1.319 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14878
$\quad$ reflections
$\theta=2.4-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Parallelepiped, orange
$0.60 \times 0.56 \times 0.35 \mathrm{~mm}$

Data collection
Bruker SMART APEX CCD diffractometer
$\omega$ scans
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 1997-1999)
$T_{\text {min }}=0.922, T_{\text {max }}=0.968$
14415 measured reflections

## Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042\)
\(w R\left(F^{2}\right)=0.115\)
\(S=1.08\)
3287 reflections
199 parameters
\[
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0646 P)^{2}\right. \\
\quad+1.5364 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.28 \mathrm{e}^{-3}
\end{aligned}
\]
```

H -atom parameters constrained

3565 independent reflections 3287 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-25 \rightarrow 25$
$k=-13 \rightarrow 13$
$l=-23 \rightarrow 23$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| O1-C17 |  |  |  |
| :--- | :--- | :--- | :--- |
| O1-C20 | $1.3761(11)$ | C16-C17 | $1.3971(14)$ |
| N1-C9 | $1.4231(13)$ | C7-C8 | $1.3947(14)$ |
| N1-C14 | $1.2808(12)$ | C7-C6 | $1.3950(14)$ |
| C19-C14 | $1.4189(13)$ | C12-C5 | $1.3879(13)$ |
| C19-C18 | $1.3914(14)$ | C12-C13 | $1.4021(13)$ |
| C9-C13 | $1.3954(14)$ | C12-C11 | $1.4713(13)$ |
| C9-C10 | $1.4876(13)$ | C13-C8 | $1.3844(13)$ |
| C18-C17 | $1.4989(13)$ | C5-C6 | $1.3954(14)$ |
| C10-C1 | $1.3914(13)$ | C4-C11 | $1.3859(13)$ |
| C10-C11 | $1.3898(14)$ | C4-C3 | $1.3924(14)$ |
| C15-C16 | $1.4124(13)$ | C1-C2 | $1.3986(14)$ |
| C15-C14 | $1.3845(14)$ | C3-C2 | $1.3915(14)$ |
| C17-O1-C20 | $1.4003(13)$ |  |  |
| C9-N1-C14 | $116.78(8)$ | C13-C12-C11 | $108.28(8)$ |
| C14-C19-C18 | $122.16(9)$ | C8-C13-C12 | $121.29(9)$ |
| N1-C9-C13 | $121.00(9)$ | C8-C13-C9 | $129.56(9)$ |
| N1-C9-C10 | $121.07(9)$ | C12-C13-C9 | $109.12(8)$ |
| C13-C9-C10 | $133.31(9)$ | C12-C5-C6 | $118.08(9)$ |
| C17-C18-C19 | $105.57(8)$ | O1-C17-C18 | $124.19(9)$ |
| C1-C10-C11 | $119.44(9)$ | O1-C17-C16 | $115.74(8)$ |
| C1-C10-C9 | $119.80(9)$ | C18-C17-C16 | $120.08(9)$ |
| C11-C10-C9 | $132.31(9)$ | C11-C4-C3 | $118.38(9)$ |
| C16-C15-C14 | $107.68(8)$ | C10-C1-C2 | $118.59(9)$ |
| C19-C14-C15 | $120.63(9)$ | C4-C11-C10 | $121.38(9)$ |
| C19-C14-N1 | $118.85(9)$ | C4-C11-C12 | $129.15(9)$ |
| C15-C14-N1 | $121.76(9)$ | C10-C11-C12 | $109.32(8)$ |
| C15-C16-C17 | $118.95(9)$ | C13-C8-C7 | $118.29(9)$ |
| C8-C7-C6 | $119.97(9)$ | C2-C3-C4 | $120.67(9)$ |
| C5-C12-C13 | $120.45(9)$ | C3-C2-C1 | $121.15(10)$ |
| C5-C12-C11 | $120.57(9)$ | C7-C6-C5 | $121.31(9)$ |

All H atoms were included in calculated positions, with aromatic and methyl $\mathrm{C}-\mathrm{H}$ distances of 0.95 and $0.98 \AA$, respectively, and were included in the refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1997-1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1997-1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 1990).

NG and ER acknowledge AAUP-CSU Research Grants and CCSU Faculty-Research Grants for primary support of this research (grant No. 38867-B5m). MZ and JU were supported by NSF grant No. 0111511, and the diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491 and by YSU.

## References

Baar, C. R., Corbray, L. P., Jennings, M. C. \& Puddephatt, R. J. (2000). J. Am. Chem. Soc. 122, 176-177.
Bruker (1997-1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Davis, J. L. \& Arndtsen, B. A. (2000). Organometallics, 19, 4657-4659.
Doyle, M. P., Yan, M., Hu, W. \& Gronenberg, L. S. (2003). J. Am. Chem. Soc. 125, 4692-4693.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hart, D. J. \& Ha, D.-C. (1989). Chem. Rev. 89, 1442-1465.
Kel'in, A. V., Sromek, A. W. \& Gevorgyan, V. (2001). J. Am. Chem. Soc. 123, 2074-2075.
Kobayashi, S. \& Ishitari, H. (1999). Chem. Rev. 99, 1069-1094.

## organic papers

Peters, K., Peters, E. M. \& Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608
Pierre, F., Moinet, C. \& Toupet, L. (1997). J. Organomet. Chem. 527, 51-64. Porter, J. R., Traverse, J. F., Hoveyda, A. H. \& Snapper, M. L. (2001). J. Am Chem. Soc. 123, 984-985.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Weinreb, S. B. \& Scola, P. M. (1989). Chem. Rev. 89, 1525-1534.

